A GPU Implementation of Coulomb Interaction in Molecular Dynamics

Prateek K. Jha, Rastko Sknepnek, Guillermo I. Guerrero-Garcia, Monica Olvera de la Cruz
Journal of Chemical Theory and Computation 2010 6 (10), 3058-3065

Ever increasing market demand for fast and realistic graphics has driven a rapid development of inexpensive GPU devices, with a doubling of computational power every 12 months. In recent years, the GPU hardware has become available to non-graphical applications through the advent of general-purpose programmability of the device. A notable example is molecular dynamics (MD) with reports of GPU implementations achieving speed-ups in excess of 100 times compared to standard MD codes.

We report a GPU implementation of long-range electrostatic interactions. Our implementation is significantly faster than the CPU implementation of the standard Ewald method for small to a sizable number of charged particles (~10^5) in electrolyte solutions.

Supported by National Science Foundation - DMR-Award #0907781